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Abstract� The conjugate gradient squared �CGS� algorithm is a Krylov subspace algorithm that
can be used to obtain fast solutions for linear systems �Ax 	 b� with complex nonsymmetric�
very large� and very sparse coe
cient matrices �A�� By considering electromagnetic scattering
problems as examples� a study of the performance and scalability of this algorithm on two MIMD
machines is presented� A modi�ed CGS �MCGS� algorithm� where the synchronization overhead
is e�ectively reduced by a factor of two� is proposed in this paper� This is achieved by changing
the computation sequence in the CGS algorithm� Both experimental and theoretical analyses
are performed to investigate the impact of this modi�cation on the overall execution time� From
the theoretical and experimental analysis it is found that CGS is faster than MCGS for smaller
number of processors and MCGS outperforms CGS as the number of processors increases� Based
on this observation� a set of algorithms approach is proposed� where either CGS or MCGS is
selected depending on the values of the dimension of the A matrix �N� and number of processors
�P �� The set approach provides an algorithm that is more scalable than either the CGS or MCGS
algorithms� The experiments performed on a ��
�processor mesh Intel Paragon and on a ���
processor IBM SP� with multistage network indicate that MCGS is approximately ��� faster
than CGS�

Keywords� algorithm scalability� conjugate gradient squared� modi�ed conjugate gradient squared�
Intel Paragon� IBM SP��� MIMD� synchronization�

�� Introduction

This is an application�driven study of solutions to linear systems of equations
�Ax � b� on MIMD parallel machines� The application being considered is the
�nite element method �FEM� modeling of open�region electromagnetic problems in
the frequency domain ��� �	� The matrices obtained in this problem are very large�
very sparse� nonsymmetric� and have complex�valued elements�
For the 
�D physical examples considered� �rst�order �linear� node�based func�

tions over triangular elements are used� The resulting A matrix is unstructured�
with the non�zero entries dictated by the global node numbering� The correspon�
dence between the node numbering and the sparsity pattern of A is illustrated in
Figure � for a simple 
�D mesh� Figure ��a� shows the connectivity among the
nodes of the mesh and Figure ��b� shows the sparsity pattern of the resulting A
matrix� Note that while the sparsity pattern of A is symmetric� the actual matrix
element values are not� In contrast� quadrilateral elements� which are commonly



�

used in �nite di
erence representations� result in a structured� multi�diagonal A
matrix� Triangular elements provide greater �exibility in the representation of the
geometry� but create the need for solution procedures that do not rely on an multi�
diagonal A matrix� A similar A matrix will result for any wave equation problem
that is described by a di
erential equation� The challenge is to be able to solve
very large order problems e
ectively�
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Figure �� A simple ��D mesh and the corresponding portion of the A matrix�

The conjugate gradient squared �CGS� algorithm ���	 is used for the solution of
the linear system� This algorithm can provide fast solutions� even though the con�
vergence pattern is often non�uniform� This study focuses on the performance and
scalability of this algorithm on MIMD machines� Synchronization and communi�
cation are two factors that introduce signi�cant overhead when this algorithm is
implemented on a parallel machine� The communication overhead is dependent on
the structure of A� i�e�� the sparsity pattern of A� Therefore� matrix reordering
techniques can be used to reduce this overhead� The synchronization overhead de�
pends on the number of vector�vector inner products performed per iteration of the
algorithm� For MIMD machines� the synchronization cost rises signi�cantly with
increasing machine size� Hence� for scalable MIMD implementations� the amount
of synchronization has to be minimized�

This paper proposes a modi�ed CGS �MCGS� algorithm where the synchroniza�
tion overhead is e
ectively reduced by a factor of two� This is achieved by changing
the computation sequence in the CGS algorithm� An approximate theoretical com�
plexity analyses and experimental studies have been done to investigate the impact
of the modi�cation on the overall execution time of the CGS algorithm� The ap�
proximate complexity analyses using a mesh�connected model indicates that for
larger machine sizes the performance of the MCGS algorithm may be up to ���
better than that of the CGS algorithm� depending on the machine architecture� For
smaller matrix sizes� CGS performs better than MCGS� The experimental studies
on a �
��processor Intel Paragon reveals that MCGS is at least 
�� better than
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the CGS for larger number of processors� The experiments are also performed on
a ���processor IBM SP
�

Because neither algorithm is better than the other for all values of input data sizes
and system parameters� a set of algorithms approach is presented �e�g�� ���� ��	��
This provides a scalable solution scheme for Ax � b� Conditions for choosing a
particular algorithm depending on input data and system parameters are also pro�
vided� Conditions such as the one developed here to choose between CGS or MCGS
depending on the system parameters are also useful in the area of heterogeneous
computing �HC� mapping systems ��	� In HC mapping� the input data �e�g�� matrix
size� remains �xed� but the system parameters are varied� i�e�� the mapping system
estimates the performance on di
erent machines and executes the application on
the machine that is expected to yield the best performance� To obtain the best
mapping� it is necessary for the HC mapping systems to have information such
as those provided by the conditions to select either MCGS or CGS depending on
system parameters�

The solution of Ax � b is a time consuming step in the FEM modeling of many
problems from diverse areas such as �uid dynamics� structures� and atmospherics�
Therefore� a lot of work has been done in designing iterative algorithms and their
parallel implementations for solving Ax � b� Some of the widely used iterative
algorithms are the Krylov subspace algorithms� In general� these algorithms provide
fast and robust solutions for Ax � b�

Dazevedo et al� ��	 developed two reformulations for the conjugate gradient �CG�
algorithm that reduce the synchronization overhead associated with the parallel
implementations of the generic CG algorithm� Meurant ���	 and Saad ���	 also
discuss the reduction of the synchronization overhead in the parallel implementa�
tions of the CG algorithm� The CG algorithm is applicable for symmetric positive
de�nite �SPD� A matrices� The work presented in the following sections extends
these ideas to reduce the synchronization overhead in the CGS algorithm� which is
applicable to nonsymmetric A matrices�

In Section 
� the open�region electromagnetic problem is brie�y examined� Gen�
eral strategies used for solving linear systems with complex elements are discussed
in Section �� The machine model and the notation used to parameterize the al�
gorithms are presented in Section �� Section � examines the issues involved in
parallelizing some of the basic linear algebra subroutines needed for implementing
a Krylov algorithm� A modi�ed CGS algorithm is provided in Section � and this
algorithm is compared with the CGS algorithm in Section �� In Section �� the
experimental results are presented�

�� Problem De�nition

This section is a brief overview of the physical problem� See ��� �	 for details�

Progress in micro�machining of optical di
ractive elements has sparked an inter�
est in the study of wavelength and subwavelength structures in the last few years�
A rigorous modeling of these devices demands the solution of the underlying elec�
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tromagnetic equations� The FEM is used here to discretize the wave equation� The
resulting set of linear equations then needs to be solved�
Consider a scalar wave equation for a 
�D problem with a time dependency ej�t

for the �elds� Let u be the total� unknown� complex�valued scalar �eld� g be the
magnetic or electric source inside the computational domain� and k� be the wave
number in free space� Also� let p be the material permittivity� q be the material
permeability� �� be the permittivity of the free space� and �� be the permeability
of the free space� The scalar wave equation in the frequency domain is

� � �p �u� � k�� q u � g� ���

with k�� � ���� ��� u � Hz � p � ���r and q � �r

for transverse electric �TE� polarization or u � Ez� p � ���r

and q � �r for transverse magnetic �TM� polarization�

A general open�region electromagnetic scattering problem with an arti�cial bound�
ary �� for TM polarization is shown in Figure 
� where the superscript inc denotes
the incident �eld components� the superscript tot denotes the total �eld compo�
nents� the superscript s denotes the scattering �eld components� and pec denotes
a perfect electric conductor� Let Bi represent the basis functions and D�� D�� and
D� be coe�cients that originate from radiation boundary conditions or absorbing
boundary conditions at the outer boundary ��	� Furthermore� let uinc denote the
incident �eld� Then� the discretization of the corresponding variational formulation
results in a system of linear equations�

Ax � b �
�

with Aij and bi represented by

Aij �

Z
�

Z �
prBi � rBj � k�� q BiBj � g Bi

�
ds

�
I
��

�
D� Bi Bj �

�
BiD� � �

�m
�BiD��

�
�Bj

�m

�
dm ���

bi �

I
��

Bi

�
�uinc

�n
�D� u

inc �D�

�uinc

�m
�D�

��uinc

�m�

�
dm ���

TheAmatrix is of sizeN ��	� corresponding to the number of free variables �number
of unknowns� within the domain� Because of the local linear expansion and testing
functions� the A matrix typically has a �ll factor less than one percent�

�� Linear Equation Solution

Various approaches are used in the literature for solving linear systems with complex
coe�cient matrices ��	� One approach is to premultiply Ax � b by the hermitian
matrix AH �AH � �A��T � ���	� which is also known as the normal equations
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Figure �� General scattering problem in unbounded region� arti�cial boundary �� and di�erent
�eld components for TM polarization�

method� This results in a linear system �Ax � �b� where �A � AHA and �b � AHb�
�A has real�valued elements and �b can have complex�valued elements� Because �A
is real� the system can be split into two systems of equations�

�A

�
Re�x�
Im�x�

�
�

�
Re�b�
Im�b�

�
���

For some A matrices this method can be very e�cient� e�g�� when A is close to
unitary �AHA � I�� However� the normal equations method often leads to systems
with poor convergence properties� This is due to the condition number of �A being
approximately the square of the condition number of A� For many complex coef�
�cient systems that occur in practical applications� the normal equations method
has been observed to be ine�cient ��	 and so is not considered in this study because
of the structure of the A matrix involved�
Another approach is to split the complex system into real and imaginary compo�

nents�

A�

�
Re�x�
Im�x�

�
�

�
Re�b�
Im�b�

�
� where A� �

�
Re�A� �Im�A�
Im�A� Re�A�

�
���

This process doubles the size of the coe�cient matrix on each dimension� i�e�� if A
is N �N then the resulting coe�cient matrix� A�� is 
N �
N � This method is not
very e�cient� because the spectral properties of the resulting coe�cient matrix are
less suitable for Krylov iterative methods than that of the original matrix ��	�
Hence� in this study� real Krylov iterative algorithms are adapted to solve complex

linear systems� Although the overall algorithm remains the same� there are changes
to the basic operations such as the inner products�
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�� The Machine Model and Terminology

The analysis of algorithms presented in this paper is based on the distributed
memory MIMD machine model� The machine has P processors and each processor
is paired with a memory module to form a processing element �PE�� The PEs are
connected by an interconnection network� In the experiments reported here� all
PEs execute the same code� i�e�� the single program multiple data �SPMD� model is
used� The PE�s memory is used to store both instructions and data� If a PE needs
data stored in a remote PE then it is retrieved by message passing�

The algorithm complexity analysis performed in the next section is for a mesh�
based distributed memory MIMD machine model� To simplify the analysis and
parameter measurement� the communication operations on the Intel Paragon are
modeled without considering the wormhole routing �
	 that is used in the Paragon�
The computation is modeled by counting the �oating point operations �FLOPs� at
the source code level �the C language is used�� The following notation is used in this
paper� ��� P � number of PEs� �
� N � dimension of the A matrix� ��� k� number of
non�zero elements per row of the A matrix �for the 
�D problems considered in this
paper the maximum value of k is ��� ��� tfp� time for a �oating�point operation �at
the source code level�� ��� ts� setup time for message passing� and ��� tw� time to
transfer a single word between two PEs�

�� Krylov Algorithms on Parallel Machines

Krylov subspace algorithms are fast and robust for the solution of unstructured
and nonsymmetric matrix problems� One of these Krylov techniques� the conjugate
gradient squared �CGS� algorithm ���	� which can be directly applied to complex
matrices� is used in the experiments reported here� The CGS algorithm for the
solution of the linear system Ax � b is shown in Figure �� An initial guess for
the solution vector x� and an arbitrarily chosen vector �r� such that �rH� r� �� � are
input to the algorithm� in addition to the vector b and the sparse matrix A� The
convergence criterion is based on the error measure� en�

All Krylov algorithms require a basic linear algebra subroutine kernel that imple�
ments vector�vector operations� vector inner products� and matrix�vector multipli�
cation� The vector inner product and matrix�vector multiplication operations need
inter�PE communications on a distributed memory parallel machine� The A matrix
is represented using a parallel version of the modi�ed sparse row format ��
	� In
this format� each row of the matrix is represented as a variable length array� Each
element of this array is a record containing an element of A and the corresponding
column index�

For simplicity� assume that the matrix dimension N is a multiple of P � Let the
A matrix and the vectors be distributed over the PEs in row striped format� where
each PE gets N�P contiguous rows� as shown in Figure �� in particular� PE i gets
rows �N�P �i to �N�P ��i � �� � �� With the data distribution given in Figure ��
any element�wise vector�vector operation can be performed concurrently by all PEs
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��� r� � b�Ax�� q� � p�� � ��
�
� ��� � �� n � �� �� � �rH� r��
��� while � not converged � do
��� � � �n��n���
��� un � rn � �qn�
��� pn � un � ��qn � �pn����
��� vn � Apn�
��� 	 � �rH� vn� 
 � �n�	�
��� qn�� � un � 
vn�
���� fn�� � un � qn���
���� rn�� � rn � 
Afn���
��
� xn�� � xn � 
fn���
���� n � n� ��
���� �n � �rH� rn� en � rHn rn�
���� endwhile

Figure �� The conjugate gradient squared �CGS� algorithm�

without inter�PE communication� Let the time for an element�wise vector�vector
operation be tvop� For the row striped format�

tvop � �
N

P
�tfp� ���

PE 0

A b

PE 1

PE 2

PE 3

PE i

PE P 1

N/P

N

Figure �� Distribution of the A matrix and vectors under the row striped format�
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For the inner�products� the evaluation is done in two phases� In the �rst phase�
each PE computes a local inner product on its N�P elements� Because each PE
has N�P elements and for each element a multiplication and addition operation
are performed� for � local inner products the computation time is 
���N��P �tfp�
In the next phase� the local inner products are combined to form a global sum�
The time taken for this phase is dependent on the interconnection network used by
the parallel system� In the Intel Paragon� the PEs are organized in a

p
P �

p
P

mesh� Figure �� shows one way to perform the combining sequence for a sum�to�
one�PE operation in a �� � mesh �without the wormhole routing�� The labels on
the arrows are step numbers �e�g�� � indicates the transfers performed in the initial
step�� Once the sum is accumulated in a single PE� it is distributed to all the
PEs� This distribution is performed by reversing the sequence of operations used
to obtain the sum at one PE� Hence four more steps are required to distribute the
sum back to all PEs�

0

0

0

0 0

0

0

0

1 1

11

2

2

3

Figure �� An example global summing sequence for a �� � mesh�

In general� for a
p
P � p

P mesh� the global summing and distribution can be
performed in 


p
P steps� where each step takes �ts � �tw�� Therefore� on the

Paragon the combining phase to form the global sum takes 
�ts��tw�
p
P � Let the

time for � vector inner�products be tinner���� which becomes

tinner��� � 
�
�N

P
�tfp � 
�ts � �tw�

p
P� ���

The time taken for a matrix�vector multiplication operation depends on the spar�
sity pattern of the A matrix� Consider the situation when A has an unstructured
sparsity pattern and is distributed among the PEs using the row striped format of
Figure �� The shaded square in Figure � represents those elements of A in rows
�N�P �i to �N�P ��i���� � and columns �N�P �i to �N�P ��i���� �� To perform
the matrix�vector multiplication operation Ax� PE i needs the values of row r of
x if column r of any of rows �N�P �i to �N�P ��i� ��� � of A contains a non�zero
element� Thus� given PE i contains rows �N�P �i to �N�P ��i � �� � � of x� PE
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i needs to perform an inter�PE communication for each column j of A that has
at least one non�zero element and �N�P ��i � �� � j or j � �N�P �i �i�e�� for all
non�zero elements of A that are in PE i and lie outside the shaded area in Figure
��� Because A is unstructured� PE i could potentially need elements of x from all
other PEs to perform the matrix�vector multiplication�
For the complexity analysis� the worst�case situation of PE i needing x vector

elements from all other PEs is considered� Therefore� an all�to�all broadcast of the
x vector elements is required before each matrix�vector multiplication operation�
In a 
�D mesh network of PEs� the all�to�all broadcast can be performed in two
phases� In the �rst phase� each PE broadcasts its N�P elements of the x vector
along the columns of PEs of the 
�D mesh� This operation requires

p
P � � steps

and each step takes ts � �N�P �tw time� At the end of this phase� each PE will
hold �N�P �

p
P � N�

p
P elements of the x vector� The next phase is similar�

but the broadcast is performed along the rows of PEs of the 
�D mesh and each
PE sends the N�

p
P elements it currently holds� The time taken for the second

phase is �ts � �N�
p
P �tw��

p
P � ��� Therefore� the total communication time is

tmcomm � �ts � �N�P �ts��
p
P � �� � �ts � �N�

p
P �ts��

p
P � ��� The computation

time per row of the A matrix is k multiplications and k� � additions� thus� for the
whole matrix the computation time tmcomp � �
k � ���N�P �tfp� From the above
results� the time for matrix�vector multiplication for an unstructured A matrix is
tumult �unstructured multiplication��

tumult � tmcomp � tmcomm

� �
k � ���
N

P
�tfp � 
ts�

p
P � �� �

N�P �p
P �tw

P
� ���

For large P �

tumult � �
k � ���
N

P
�tfp � 
ts

p
P �Ntw� ����

The analysis of the algorithms provided in this paper assumes a large value for P �
the number of PEs�
The unstructured A matrix can be structured to obtain a reordered A matrix

with a banded sparsity pattern� Let the reorderedA matrix have an odd bandwidth
of � �i�e�� aij � � for ji � jj 
 b��
c�� then PE i needs to communicate with PEs
that are numbered in the range �i�db��
c�N�P e���i� db��
c�N�P e	 to obtain the
necessary x vector elements to perform the matrix�vector multiplication� Instead
of performing a broadcast operation to retrieve the x vector elements before every
matrix�vector multiplication� for the banded A matrices� send and receive type
communications are used� Hence� the banded structure of the reordered A matrix
reduces the communication time spent in retrieving the necessary x vector elements�
but the time spent on computation remains the same as the unstructured case�
For very large and very sparse reordered matrices such as those encountered in

the application that is considered here� � is such that ��P ��N � c for a small
constant c� For the reordered matrices and the number of PEs considered here� c
is equal to two �i�e�� PE i needs to perform inter�PE transfers with PEs i� � and
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i� ��� If � does not satisfy this condition� then reordered A is considered to have
an unstructured sparsity pattern and broadcast operations are used instead of the
send and receive calls to retrieve the x vector elements�

The total multiplication time for this case is called tbmult �banded multiplication��
which is given by

tbmult � �
k � ���
N

P
�tfp � 
ts � �tw� ����

The parameters derived above are used to obtain expressions for the parallel run
time per iteration�

The amount of work done per iteration of the algorithm is approximated by the
body of the �while� loop �in Figure � for example�� i�e�� the initialization overhead
prior to loop entry is considered negligible� In the CGS algorithm of Figure �� it
can be observed that for each iteration of the �while� loop three inner products
and two matrix�vector multiplications are required� Two of the inner products can
be performed with a single global summing operation� i�e�� the local inner products
corresponding to the two inner products in Line ���� of Figure � can be reduced
in a single global operation �with two operands�� Vector�vector additions� vector�
vector subtractions� and vector�scalar multiplications are also needed to implement
the algorithm� However� these operations are completely parallelizable� i�e�� no
inter�PE communication is involved in a distributed memory machine�

The following expressions for the parallel run time of the CGS algorithm are
derived assuming a data distribution as described in the beginning of this section�
Table � shows the line by line time complexity of the CGS algorithm� Note that
only the expressions within the while loop are considered here�

Table �� Line by line time complexity
of the CGS algorithm

line number time complexity

��� tfp

��� ��N�P �tfp

��� ��N�P �tfp

��� tmult

�
� tfp � tinner���

��� ��N�P �tfp

���� �N�P �tfp

���� tmult � ��N�P �tfp

���� ��N�P �tfp

���� tfp

���� tinner���
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Let the time taken for the ith iteration of the CGS algorithm be tiCGS � An
expression for the value of tiCGS can be obtained by counting the di
erent types of
operations performed per iteration of the CGS algorithm� Therefore�

tiCGS � �� �
��N

P
�tfp � tinner��� � tinner�
� � 
tmult� ��
�

where the �� � ��N�P �tfp term comes from Lines ���� ���� ���� ���� ���� ����� �����
��
�� and ����� the tinner��� term comes from Line ���� the tinner�
� term comes
from Line ����� and the 
tmult term comes from Lines ��� and ���� of Figure ��
The number of PEs that result in the minimum parallel execution time� PCGS � can
be derived by solving for P in ��tiCGS����P � � ��

If A has an unstructured sparsity pattern� then Equation ��
� can be simpli�ed
by substituting the value of tinner from Equation ��� and the value of tumult for
tmult from Equation ����� For an unstructured A matrix� let the time per iteration
of the CGS algorithm be tiCGS u�

tiCGS u � ��ts � �tw�
p
P �

��� � �k�Ntfp
P

� �tfp � 
Ntw ����

The number of PEs that result in the minimum parallel execution time� PCGS u�
can be derived as the following by solving for P in ��tiCGS u����P � � ��

PCGS u �

�
��� � �k�Ntfp

�ts � �tw

����

����

Similarly� for a reordered A �obtained by reordering the unstructured A� with a
bandwidth of �� let the time per iteration of the CGS algorithm be tiCGS b and the
number of PEs for minimum parallel execution time be PCGS b� A general expres�
sion for the time taken per iteration of the CGS algorithm is given by Equation
��
�� i�e�� the expression is applicable for reordered or unstructuredAmatrices� The
only parameter in Equation ��
� that depends on the structure of the A matrix
is the tmult term� By substituting the value of tbmult given by Equation ���� into
Equation ��
� an expression for tiCGS b can be obtained� Therefore� from Equations
���� ����� and ��
��

tiCGS b � ��ts � �tw�
p
P �

��� � �k�Ntfp
P

� �tfp � �ts � 
�tw ����

The number of PEs that result in the minimum parallel execution time� PCGS b�
can be derived as the following by solving for P in ��tiCGS b����P � � ��

PCGS b �

�
��� � �k�Ntfp


ts � �tw

����

����
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�� The Modi�ed CGS 	MCGS
 Algorithm

In Figure �� The element�wise vector�vector� vector�scalar� scalar�scalar� and matrix�
vector operations that follow the inner products in Lines ��� and ���� depend on
the values generated by the inner product operations� Therefore� the operation in
Lines ��� and ���� form two distinct synchronization operations per iteration of the
�while� loop� Depending on the values of N and P � the synchronization overhead
can cause a signi�cant impact on the actual execution time� The synchronization
overhead can be reduced by merging the inner products together so that a single
global summing is su�cient for an iteration of the �while� loop�
The basic idea in formulating the MCGS algorithm is to merge the inner products

present in the CGS algorithm so that they can be evaluated using a single global
summing operation per iteration of the �while� loop� One way of merging the
inner products is to reformulate the algorithm so that the inner product in Line
��� of Figure � can be combined with that in Line ���� of Figure �� Let si � Ari�
wi � Aqi� and yi � Api� From Figure �� consider Lines ���� ���� ���� and ���

	 � �rH� vn

� �rH� Apn

� �rH� A�rn � 
�qn � ��pn���

� �rH� sn � 
��rH� wn � ���rH� yn�� ����

Consider Line ��� of Figure ��

pn � un � ��qn � �pn���

Apn � Arn � 
�Aqn � ��Apn��

yn � sn � 
�wn � ��yn�� ����

From Line ��� of Figure ��

qn�� � un � 
vn

� un � 
Apn

� un � 
yn ����

From Lines ���� ����� and ���� of Figure ��

rn�� � rn � 
A�un � qn���

� rn � 
�Arn � �Aqn �Aqn���

� rn � 
�sn � �wn �wn��� �
��

Using the derivations given in the Equations ����� ����� ����� and �
��� the CGS
algorithm of Figure � can be reformulated as the MCGS algorithm of Figure ��
In the MCGS algorithm of Figure �� the inner products are all grouped together so

that a single global summing operation �with �ve operands� is su�cient to evaluate
them� The number of matrix�vector multiplications in the MCGS algorithm remain
the same as the number of matrix�vector multiplications in the CGS algorithm�
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Due to the modi�cations� additional scalar�scalar� scalar�vector� and element�wise
vector�vector operations are performed in the MCGS algorithm compared to the
operations performed by the CGS algorithm� However� these additional operations
scale linearly with the inverse of the number of PEs�

��� ��� � �� p� � �� q� � �� w� � ��
�
� w�� � �� y�� � �� r� � b�Ax�� s� � Ar��
��� �� � �rH� r�� � � �rH� s��
��� � � �rH� w�� � � �rH� y��� ��� � �� n � ��
��� while � not converged � do
��� � � �n��n��� 	 � � � ��
�� ����
��� 
 � �n�	�
��� un � rn � �qn�
��� yn � sn � 
�wn � ��yn���
���� qn�� � un � 
yn�
���� wn�� � Aqn���
��
� rn�� � rn � 
�sn � �wn �wn����
���� sn�� � Arn���
���� xn�� � xn � 
�un � qn����
���� n � n� ��
���� �n � �rH� rn� � � �rH� sn� � � �rH� wn� � � �rH� yn��� en � rHn rn�
���� endwhile

Figure �� The modi�ed conjugate gradient squared �MCGS� algorithm

The following expressions for the parallel run time of the MCGS algorithm are
derived assuming a data distribution as described in the beginning of Section ��
Table 
 shows the line by line time complexity of the MCGS algorithm� Note that
only the expressions within the while loop are considered here�

The parallel run time for the i�th iteration of the MCGS algorithm is

tiMCGS � ��� �
��N

P
�tfp � tinner��� � 
tmult� �
��

where the ��� � ��N�P �tfp term comes from Lines ���� ���� ���� ���� ����� ��
��
����� and ����� the tinner��� term comes from Lines ����� and the 
tmult term
comes from Lines ���� and ���� of Figure �� The number of PEs that result in
the minimum parallel execution time� PMCGS � can be derived by solving for P in
��tiMCGS����P � � ��

If A has an unstructured sparsity pattern� then Equation �
�� can be simpli�ed
by substituting the value of tinner from Equation ��� and the value of tumult for
tmult from Equation ����� giving

tiMCGS u � ��ts � ��tw�
p
P �

�
� � �k�Ntfp
P

� ��tfp � 
Ntw �

�



��

Table �� Line by line time complexity
of the MCGS algorithm

line number time complexity

��� �tfp

��� tfp

�
� ��N�P �tfp

��� �tfp � ��N�P �tfp

���� ��N�P �tfp

���� tmult

���� ��N�P �tfp

���� tmult

���� ��N�P �tfp

���� tfp

���� tinner���

PMCGS u �

�
�
� � �k�Ntfp

�ts � �tw

����

�
��

Similarly� for a banded A �obtained by reordering the unstructured A� with a
bandwidth of �� from Equations ��� and �����

tiMCGS b � �
ts � ��tw�
p
P �

�
� � �k�Ntfp
P

� ��tfp � �ts � 
�tw �
��

PMCGS b �

�
�
� � �k�Ntfp

ts � �tw

����

�
��

�� Comparison of the Algorithms

From the derivation of the MCGS algorithm in Section �� it can be observed that
MCGS and CGS are basically the same algorithms� but with a di
erent comput�
ing sequence� Because both algorithms are doing exactly the same calculations�
they are numerically equivalent� unless rounding�o
 errors create a di
erence� The
experimental results presented in Section � further support this claim�

Reordering the matrix A for bandwidth reduction reduces the time taken for
the matrix�vector multiplication operation� but the time for the other operations
remains almost the same� Therefore� reordering the A matrix reduces the total
execution time� Because the total execution time for the banded A matrix is lower
than the execution time for the unstructured A matrix case� the inner product op�
eration contributes a bigger percentage towards the overall execution time� Hence�



��

the reduction in the global synchronization overhead is likely to have a more sig�
ni�cant impact for banded A matrices�

Because MCGS and CGS take the same number of iterations to converge� the
parallel run time of the algorithms can be compared using the time taken per
iteration of the algorithm� i�e�� for MCGS to perform better than CGS� tiMCGS

should be less than tiCGS� Consider the case where A is banded with a bandwidth
� and ts � tw� so the tw term can be ignored� Using the expressions derived in
Equations ���� and �
�� for tiCGS b and t

i
MCGS b� respectively� for MCGS to perform

better than CGS

P 


�
�Ntfp

ts

����

for ts � tw� �
��

Let tmin
MCGS b and tmin

CGS b be the minimum parallel execution times for the MCGS
and CGS algorithms� respectively� The value of PCGS b can be substituted from
Equation ���� into Equation ���� to obtain the following expression for tmin

CGS b�

tmin
CGS b � ��ts � �tw�

�p
PCGS b �

�




�
��� � �k�Ntfp

ts � �tw

�
�

PCGS b

�

��tfp � �ts � 
�tw

� ��ts � �tw�
p
PCGS b � �tfp � �ts � 
�tw �
��

Similarly� Equations �
�� and �
�� can be used to derive the expression for tmin
MCGS b�

tmin
MCGS b � �
ts � ��tw�

�p
PMCGS b �

�




�
�
� � �k�Ntfp

ts � �tw

�
�

PMCGS b

�

���tfp � �ts � 
�tw

� ��ts � ��tw�
p
PMCGS b � ��tfp � �ts � 
�tw �
��

For distributed memory MIMD machines� where ts � tw� from Equations �
�� and
�
��� tmin

CGS b and tmin
MCGS b can be approximated as follows�

tmin
CGS b � �ts

p
PCGS b �
��

tmin
MCGS b � �ts

p
PMCGS b ����

tmin
MCGS b

tmin
CGS b

�
�

�

r
PMCGS b

PCGS b

�
�




�
�
� � �k�Ntfp�
ts � �tw�

�ts � �tw���� � �k�Ntfp

����

�
�
�
� � �k�

���� � �k�

����

� ���� for k � � ����
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Hence� the best MCGS timing is approximately up to ��� better than the best
CGS timing� The variation of the ratio tmin

MCGS b�t
min
CGS b with the value of k is shown

in Figure �� Also� for the assumptions stated� Equation �
�� provides the machine
size �in number of PEs� above which MCGS performs better than CGS� This can
be used to automatically select an algorithm �either CGS or MCGS� depending on
N � P � tfp� and ts ���� ��	�
This approach will allow heterogeneous computing management systems ��	 to

adaptively select the best algorithm to use from a set of algorithms� In this case�
the problem size �N� is �xed� but the values of P � ts� and tfp can vary depending
on the machine that is selected for executing the solver� For the heterogeneous
computing management systems to make the best decision� it is necessary to provide
information such as that in Equation �
�� to the management systems�
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�� Numerical Experiments and Discussion

Experiments were conducted on up to �
��nodes of the Purdue mesh�connected
Intel Paragon XP�S �
	 and up to �� thin nodes of the Purdue multistage net�
work connected IBM SP
 ��� 
� ��	� The algorithms were implemented on the
Paragon using C and NX message passing library routines� The algorithms were
implemented on the IBM SP
 using C and message passing interface �MPI� li�
brary routines� The global summing operations are performed using the recursive
doubling routines provided by the NX and MPI libraries�
The timings varied slightly �less than �ve percent� between trials� This is due to

cache misses� background network tra�c� and possibly other factors� The minimum
of the timing values was taken as the representative value� because the minimum
occurs when the impact due to external factors is minimal�
Two electromagnetic scattering matrices were used in the experiments reported in

this section� The bigger matrix that is referred to as A� is ������by������ and the



��

smaller one that is referred to as A� is 
����by�
���� A� is for a �� radius circular
computation domain� a rectangular � � ���� perfect conductor scatterer� and TM
polarization with an incidence angle of ��� with respect to the plate normal� A� is
for an incident angle of 
���� Each matrix was reordered to form a banded matrix
by a reverse Cuthill�McKee algorithm ��	� obtaining two more matrices A�b and
A�b� where A�b is from A� and A�b is from A�� The sparsity pattern of A� is
shown in Figure � and A�b is shown in Figure �� The thick straight line shown in
Figure � denotes a band that contains all the non�zero elements of the reordered A
matrix� The timings for the reordering phase are not reported here� because these
timings do not a
ect the CGS versus MCGS comparison�

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

nz = 255406

Figure �� Sparsity pattern of test matrix A�� N 	 ��
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The execution time of the CGS algorithm is dependent on the time taken for the
basic operations� matrix�vector multiplication �referred as matvec�� inner�products
�referred as innerprod�� element�wise vector�vector operations� scalar�vector oper�
ations� and scalar�scalar operations� The last three do not involve inter�PE com�
munication �i�e�� each PE executes them independently� and will be collectively
referred to as indops� Thus� there are three categories to be considered� matvec�
innerprod� and indops� To get a better understanding of the variation in the
performance with the number of PEs� the timings were measured separately for
innerprod� matvec� and indops� Figure �� shows the three timing curves corre�
sponding to innerprod time� matvec time� and indops time for the Paragon�
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Figure �� Sparsity pattern of test matrixA�b obtained by reorderingA� using the reverse Cuthill�
McKee algorithm�

The innerprod time includes the time needed to compute the local product terms
and the time needed to sum the local products� The computation time for the local
products decreases with increasing P � whereas the global summing time increases
with increasing P � Likewise� the matvec time includes the time to do the multi�
plications and additions and the inter�PE communication time needed to retrieve
remote vector values� From Figure �� it can be noted that the timing for matvec
decreases with increasing P � This is due to the decrease in the computation time
associated with the matvec operation� Similarly� the time for the indops decreases
with increasing number of PEs�
For the larger matrix �A�� and � � P � ��� the indops time is the dominant

component of the total execution time� Therefore� any optimizations done for
the innerprod and matvec times will not have a signi�cant impact on the overall
execution time� However� as the number of PEs are increased the indops time
decreases and at �
� PEs the innerprod and matvec times are nearly as same as
the indops time� Reordering the matrix A� has a reducing e
ect on the matvec

time� as shown in Figure �� for the Paragon� The indops and innerprod times are
independent of the reordering� The overall execution time of the CGS algorithm is
reduced� due to the reordering of A for bandwidth reduction� For the bandwidth�
reduced A� innerprod time forms a higher percentage of the overall execution
time compared to the situation where matrix A is unstructured� Therefore� the
optimizations towards reducing the innerprod are likely to have a relatively high
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impact on the overall execution time when the matrix A is reordered for bandwidth
reduction�
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Figure ��� Independent components of the total execution time for CGS on the Intel Paragon for
A�b�

From the discussion of MCGS in Section �� it is evident that the modi�cations
performed in merging one inner product with the other one in the CGS algorithm
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to formulate the MCGS algorithm has introduced additional element�wise vector
operations� vector�scalar� scalar�scalar operations �i�e�� indops forms a higher per�
centage of the total number of operations performed by the MCGS algorithm com�
pared to the indops performed by the CGS algorithm�� For smaller P and larger
N values� the indops time dominates the other two components� innerprod and
matvec� Therefore� for smaller P and larger N values� MCGS takes more time
than the CGS algorithm� as shown in Figure �
 with A�b for the Paragon� As P is
increased MCGS starts to perform better� The same comparison is shown for A�b

in Figure ��� The experimentally derived di
erence of 
�� con�rms a signi�cant
improvement using MCGS for this set of parameters�

Equation �
�� is used to predict the value of P �� where P � is the number of PEs
beyond which the MCGS algorithm should outperform the CGS algorithm� The
values of N � P � ts� and tfp are needed to predict the value of P �� To determine
the value of tfp� small code segments with �oating�point operations were executed
on the Paragon and the executions were timed� From the experiments� the value
of tfp was found to be equal to ������ ���� seconds� The value of tfp determined
by these experiments do not include any loop or other integer operation overhead�
However� the time delays incurred by cache misses are included in the measured
value of tfp�

The value of ts is measured by an echo server experiment� as shown in Figure
��� In the echo server experiment� two PEs which are adjacent to each other are
selected� One PE runs the echo server� which is a program that retransmits what�
ever it receives back to the sending PE� The other PE in the experiment executes
the testing program� The testing program turns on a timer and sends a zero�length
message to the PE that runs the echo server� Once the testing PE receives the reply
back from the echo server� the timer is stopped and the elapsed time is measured�
The elapsed time is equal to two times the message setup overhead� i�e�� 
ts� The
value of ts was determined as ��
�s from the echo server experiment for the Intel
Paragon� For the Paragon� using the values of ts and tfp determined by the above
experiments� the value of P � is estimated by Equation �
�� to be ��� for A�b and
�� for A�b�

In Figure ��� the MCGS algorithm is compared with the CGS algorithm on the
IBM SP
 for A�b� The PEs in the SP
 are faster and have larger cache memory
than the PEs in the Paragon� and the SP
 has a relatively smaller tfp�ts ratio than
the Paragon� Therefore� in the SP
� the MCGS algorithm is the better algorithm
for even smaller number of PEs� as compared to the Intel Paragon� A complexity
analysis of the algorithms was not performed for the SP
 machine� because only
empirically derived communication models are available for the SP
 ���� 
�	� From
Figure ��� it can be observed that for matrix A�b that CGS outperforms MCGS�
however� as the number of PEs are increased the performance gap between the
MCGS and CGS decreases� At a su�ciently large P � the MCGS algorithm should
perform better than the CGS algorithm for larger matrices �e�g�� A�b� as it did for
smaller matrices �e�g�� A�b��
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� Conclusions

A reformulation of the CGS algorithm called the MCGS is presented in this paper�
The system of linear equations obtained from �nite element modeling of open�region
electromagnetic problems was solved using the CGS and MCGS algorithms� This
work examined ways of reducing the communication and synchronization overhead
associated with implementing the CGS algorithm on MIMD parallel machines�

An experimental and theoretical complexity analysis was performed to evaluate
the performance bene�ts� The approximate complexity analysis of the CGS and
MCGS algorithms on a mesh�based multiprocessor model estimates that the per�
formance of the MCGS algorithm may be up to ��� better than the performance
of the CGS algorithm� depending on the machine architecture� The experimental
results obtained from a �
��processor Intel Paragon show that the performance of
the MCGS algorithm is at least 
�� better than the performance of the CGS algo�
rithm for a 
���� 
��� sparse matrix� The experimental results on the IBM SP

indicate that the MCGS is the better algorithm for the 
���� 
��� sparse matrix
and the CGS algorithm is the better algorithm for the ����������� sparse matrix�
The MCGS can be expected to be the better algorithm for the larger matrix as the
number of PEs increases� Any optimization or preconditioning that is used on CGS
to reduce the overall computation time can be used on MCGS as well� The tech�
niques used here to reduce the synchronization overhead of CGS can be extended
to other nonsymmetric Krylov methods� such as the BiCGSTAB algorithm ���	�

Because MCGS is not the best method for all situations� the use of a set of al�
gorithms approach is proposed� In the set of algorithms approach� either CGS or
MCGS is selected depending on the values of N and P � The set approach pro�
vides an algorithm that is more scalable than either the CGS or MCGS algorithms
alone� Conditions such as the one developed here to choose between CGS or MCGS
depending on the system parameters are also useful in the area of HC mapping sys�
tems ��	� In HC mapping� the input data �e�g�� matrix size� remains �xed� but the
system parameters are varied� i�e�� the mapping system estimates the performance
on di
erent machines and executes the application on the machine that is expected
to yield the best performance� To obtain the best mapping� it is necessary for the
HC mapping systems to have information such as those provided by the conditions
to select either MCGS or CGS depending on system parameters�

Acknowledgments

A preliminary version of this paper was presented at the ���� International Confer�
ence on Parallel Processing� The authors thank the referees for their suggestions�
This work was supported in part by the DARPA�ITO Quorum Program under NPS
subcontract numbers N�

������M����� and N�

������M��
���



��

References

�� T� Agerwala� J� L� Martin� J� H� Mirza� D� C� Sadler� D� M� Dias� and M� Snir� SP� system
architecture� IBM Systems Journal� ��������
�� �����

�� G� S� Almasi and A� Gotlieb� Highly Parallel Computing� �nd ed� Benjamin Cummings�
Redwood City� CA� �����

�� E� Dazevedo� V� Eijkhout� and C� Romaine� Reducing communication costs in the conjugate
gradient algorithm on distributed memory multiprocessors� LaPack Working Note ��� �����

�� R� W� Freund� Conjugate gradient�type methods for linear systems with complex symmetric
coe
cient matrices� SIAM Journal on Scienti
c and Statistical Computing� ���������
� �����

�� R� W� Freund� G� H� Golub� and N� H� Nachtigal� Iterative solution of linear systems� Acta
Numerica� pp� ������� �����

�� A� George and J� W� Lu� Computer Solution of Large Sparse Positive De
nite Systems�

Prentice�Hall� NJ� ��
��
�� B� Lichtenberg� Finite element modeling of wavelength�scale di�ractive element� PhD thesis�

Purdue University� West Lafayette� IN� �����

� B� Lichtenberg� K� J� Webb� D� B� Meade� and A� F� Peterson� Comparison of two�dimensional

conformal local radiation boundary conditions� Electromagnetics� ��������
�� �����
�� M� Maheswaran� T� D� Braun� and H� J� Siegel� High�performance mixed�machine heteroge�

neous computing� �th Euromicro Workshop on Parallel and Distributed Processing� pp� ����
���
�

��� G� Meurant� Multitasking the conjugate gradient on the Cray X�MP��
� Parallel Computing�
�������
�� ��
��

��� Y� Saad� Krylov subspace methods on supercomputers� SIAM Journal on Scienti
c and

Statistical Computing� ������������� ��
��
��� Y� Saad� SPARSKIT� A basic tool kit for sparse matrix computations� LaPack Working Note

�	� �����
��� H� J� Siegel� L� Wang� J� E� So� and M� Maheswaran� Data Parallel Algorithms� In A� Y�

Zomaya� ed�� Parallel and Distributed Computing Handbook� pp� �������� McGraw Hill� New
York� NY� �����

��� P� Sonnevald� CGS� A fast Lanczos�type solver for nonsymmetric linear systems� SIAM Jour


nal on Scienti
c and Statistical Computing� ��������� ��
��
��� G� Strang� Linear Algebra and its Applications� �rd ed� Harcourt Brace Jovanovich� San

Diego� CA� ��

�
��� C� B� Stunkel� D� G� Shea� B� Abali� M� G� Atkins� C� A� Bender� D� G� Grice� P� H�

Hochschild� D� J� Joseph� B� J� Nathanson� R� A� Swetz� R� F� Stucke� M� Tsao� and P� R�
Varker� The SP� high�performance switch� IBM Systems Journal� ����
������ �����

��� H� A� Van Der Vorst� Bi�CGSTAB� A fast and smooth converging variant of Bi�CG for
the solution of nonsymmetric linear systems� SIAM Journal of Scienti
c and Statistical

Computing� ����������� �����
�
� M�C� Wang� W� G� Nation� J� B� Armstrong� H� J� Siegel� S� D� Kim� M� A� Nichols� and M�

Gherrity� Multiple quadratic forms� A case study in the design of data�parallel algorithms�
Journal of Parallel and Distributed Computing� ����������� �����

��� Z� Xu and K� Hwang� Modeling communication overhead� MPI and MPL performance on
the IBM SP�� IEEE Parallel and Distributed Technology� ������� �����

��� Z� Xu and K� Hwang� Early prediction of MPP performance� The SP�� T�D� and Paragon
experiences� Parallel Computing� ����������� �����



Scheduled to appear in The Journal of Supercomputing� � �� ��
c� Kluwer Academic Publishers� Boston� Manufactured in The Netherlands�

Contributing Authors

Muthucumaru Maheswaran is an Assistant Professor in the De�
partment of Computer Science at the University of Manitoba� Canada�
He received a BSc degree from the University of Peradeniya� Sri
Lanka and the MSEE and PhD degrees from Purdue University�
He received a Fulbright scholarship to pursue his MSEE degree at
Purdue University� His research interests include computer architec�
ture� distributed computing� heterogeneous computing� and resource
management systems for metacomputing�

Kevin J� Webb received the B�Eng� and M�Eng� degrees from
the Royal Melbourne Institute of Technology� Australia� in ���
 and
��
�� respectively� the M�S�E�E� degree from the University of Cali�
fornia� Santa Barbara� in ��
�� and the Ph�D� degree from the Uni�
versity of Illinois� Urbana� in ��
�� From ��
� through ��
� he was
on the faculty of the University of Maryland� College Park� and since
January� ���� he has been with the School of Electrical and Com�
puter Engineering� Purdue University� West Lafayette� Indiana� He
spent the ������
 academic year on sabbatical at the Royal Mel�
bourne Institute of Technology and the Australian National Univer�
sity� Canberra�

Howard Jay Siegel is a Professor in the School of Electrical and
Computer Engineering at Purdue� He received two BS degrees from
MIT� and the MA� MSE� and PhD degrees from Princeton� He is
a Fellow of the IEEE and a Fellow of the ACM� He has coauthored
over ��� technical papers� was a Coeditor�in�Chief of the Journal
of Parallel and Distributed Computing� and served on the Editorial
Boards of both the IEEE Transactions on Parallel and Distributed
Systems and the IEEE Transactions on Computers�



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


